

Army Ground Robotics for Future Combat Systems

Charles M. Shoemaker
U.S. Army Research Laboratory
Attn: AMSRL-WM
Aberdeen Proving Ground, MD 21005-5066

410-278-8810

cshoe@arl.mil

AMC -- Your Readiness Command . . . Serving Soldiers Proudly!

Army Ground Robotics for Future Combat Systems

Developing & demonstrating technology required to create multi-mission capable unmanned ground vehicles for a lighter, more lethal, highly survivable Objective Force

Path to Success

- Rapidly develop, test and transition technologies critical for intelligent unmanned FCS components.
- Provide new options for light, deployable and survivable systems which are multimission capable with acceptable soldier workload.
- Attain performance levels consistent with FCS operational goals – Autonomous mobility at speeds of up to 40 MPH on FCS scale platforms – one soldier managing many unmanned systems
- Focus research to enable development of small, reliable, modular autonomous mobility technology packages for multimission, multi-platform application

- Develop technology for operational environments to accelerate transition to fielded systems
- Stress increased capabilities while maintaining current cost to provide affordability

Early troop experimentation with advanced robotics technology critical for the Objective Force

Army Ground Robotics for Future Combat Systems

A clear strategy to provide robotics technology for FCS

- Focused research:
 - Machine perception
 - Intelligent control
 - Soldier-robot interface
- Extensive testing
 - Early continuous field tests
 - Troop interaction to focus research & foster parallel TTP development
- Develop perception capabilities
 - Sensor-rich now/down select later
- Optimize use of a priori data:
 - Digital terrain
 - UAV connection
 - Human-robot teams
- Work with other agencies:
 - Leverage other Government efforts (NASA, NIST, DOE, DARPA)
 - Industry
 - Academia
 - International

Autonomous Land Navigation for FCS and the entire Objective Force

Technology Maturity

Autonomous Land Navigation (Robotics)

Attributes	Objectives					
	FCS Best Estimated Need	Current	April 2 Status	003 Risk	April 20 Status	004 Risk
Performance						
Cross-country mobility (day)	40 MPH	10 MPH	30 MPH	M*	40 MPH*	М
Cross-country mobility (night)	25 MPH	5 MPH	20 MPH	M*	25 MPH*	M
Physical						
Mobility module size	10 ft ³	14 ft ³	10 ft ³	L	10 ft ³	L
Mobility module weight	180 lbs	180 lbs	180 lbs	L	180 lbs	L
Environmental						
Temperature Max/Min.	-50°,+125°F	+40°,+105°F	+40°,+105	°F L	+40°,+105°F	- L
Programmatic						
Test Environment	Field Test	Limited Field	Field		Field	
Unit Cost (By calculation)		\$370K/unit	\$370K/u	ınit	\$370K/uni	t
*Demonstrated/Evaluated on larger platform, e.g., NAC 8X8 Hybrid Electric or new DARPA UGV.						
Overall TRL Level	NA	3-4	5		6	

TRL Rationale

← Su	ubsystems →	System
-------------	------------------------	--------

	/					
S. C.	TRL	Description	Perception	Intelligent Control	Man- Machine Interface	Autonomous Mobility Technology
		Development and testing through simulation & experiments followed by testbed Integration for experiments with troops	Obstacle detection/ classification with multiple sensor modes: stereo, ladar, & radar. testbed integration with troop experiments at Ft. Knox – 10/00	4D/RCS Architecture – Initial implementation on testbed vehicles for troop experiments APG - 9/99	Touch-screen based system developed & integrated for troop testing In virtual & live experiments 8/99 – 9/99	Development of component technology & integration onto testbeds for troop experiments – 10/00
	TRL 5	Extensive experiments including a user appraisal with XUV testbeds	G4 & Pyramid processors provide improved computer capability Development of improved AM sensors	Tactical behavior development – full 4D/RCS implementation	Control of 4 XUV's by single operator Exchange of control by operators	Maturation of component technologies, integration on 4 XUV's, with extensive testing & user appraisal
	TRL 6	Development of testbeds for in-scale tests of system concept	Multi-sensor fusion to provide terrain understanding & enable tactical behaviors in complex terrain	Management/ control of multiple heterogeneous robots by a single soldier	of MMI into FCS scale system	Integration on & rigorous experiments - FCS scale & heterogeneous systems,

Detailed Program Schedule

Autonomous Land Navigation (Robotics)

Breadboard Test -TRL 5

- Remote Sensor (XUV) testbed
- Rolling-wooded terrain moderate difficulty
- Baseline terrain understanding/ tactical behavior set
- Cross-country mobility @ 65% of HMMWV

Brassboard Test-TRL 6

- Full-scale "FCS companion" surrogate testbed vehicle system
- Ft. Knox-like terrain
- Multi-mission behavior set
- Vehicle maneuverability @ 80% of manned tactical vehicle speed

Roadmap for Army Ground Robotics R&D

- Demo III developing baseline autonomous mobility technology
 - Demo IIIB features two vehicles maneuvering at speeds of up to 20 MPH
 - Demo III will feature one soldier managing up to four vehicles and tactical behaviors
- Multi-organization partnership.
 - ARL Robotics Technology Development
 - TARDEC System Integration, Demonstration, Experimentation
 - Other RDECs Specific mission packages for future experimentation

Partnership with OSD

- Program received increased from OSD for development of autonomous mobility technology with near-term focus of completing Demo III objectives.
- Responsibility for developing ground robotics technology for Joint Service application
- Robotics Technology Alliance acquisition process initiated initiation of alliance research program anticipated in Spring '01

Summary

- Aggressive robotics technology program
- Focused on enabling technology for FCS
 - Multiple control modes
 - Autonomous (principal emphasis)
 - Semi-autonomous
 - Cross-country navigation at tactical speeds
- Technology focal points are:
 - Perception
 - Intelligent control
 - Soldier-robot interface
- Extensive experimentation is underway
 - Synchronized to FCS schedules
 - Provides performance data to guide FCS technology investment strategy